β-распад против законов сохранения ЧАСТЬ г3

РАЗДЕЛ История экономической мысли

определение понятие значение информация система структура принцип слово знак

ЧАСТЬ г3 β-распад против законов сохранения

Лакатос Фальсификация и методология научно исследовательских программ ВЕРНУТЬСЯ

ГЛАВА 3 Методология научных исследовательских программ ВЕРНУТЬСЯ

ГЛАВА 3

ЧАСТЬ г2 Эксперименты Луммера-Прингсгейма ВЕРНУТЬСЯ

(г3) β-распад против законов сохранения

ПЕРЕЙТИ ЧАСТЬ г4 Заключение. Требование непрерывного роста

Наконец, рассмотрим историю эксперимента, который чуть ли не стал еще одним «величайшим негативным экспериментом истории науки». Это послужит еще одной иллюстрацией того, как трудно в точности решить, чему учит нас опыт, что он «доказывает» и «опровергает». Нам предстоит внимательно проанализировать «наблюдение» Чедвиком бета-распада (изменяющий заряд ядра на единицу без изменения массового числа) в 1914 г. Мы увидим, что эксперимент, который вначале рассматривался как обычная головоломка в рамках исследовательской программы, затем был возведен в ранг «решающего эксперимента», но потом опять низведен до обычной головоломки - и все это в зависимости от целостного изменения теоретического и эмпирического ландшафта. Эти изменения ввели в заблуждение многих летописцев, привыкших к определенным историческим стереотипам, что и привело к искажениям действительной истории. [262]

Когда Чедвик открыл непрерывный спектр радиоактивного β-излучения в 1914 г., никто не мог подумать, что этот курьезный феномен имеет какое-то отношение к законам сохранения. В 1922 г. были предложены два остроумных объяснения, соперничавших одно с другим. Оба объяснения исходили из атомной физики того времен. Одно принадлежало Л. Мейтнер, другое К. Эллису. Согласно Л. Мейтнер, электроны частью были первичными, исходящими из ядер, частью вторичными - из электронных оболочек. По Эллису, все электроны были первичными. Обе теории опирались на утонченные вспомогательные гипотезы, но обе предсказывали новые факты. Предсказанные факты противоречили друг другу, а экспериментальные данные поддержали теорию Эллиса. [263] Л. Мейтнер апеллировала, «апелляционный суд» экспериментаторов отклонил ее иск, но отметил, что одна из вспомогательных гипотез в теории Эллиса, имеющая принципиальное значение, должна быть отвергнута. [264] Спор закончился вничью.

262 Важное исключение—описание Паули [141]. Далее я постараюсь скорректировать это описание показать, что его рациональность легко понятна в свете моего подхода.

И никто бы не подумал, что эксперимент Чедвика поставит под сомнение закон сохранения энергии, если бы Бор и Крамерс не пришли в то же самое время, когда разгорался спор между Мейтнер и Эллисом, к идее о том, что последовательная теория может быть развита лишь при условии, что принцип сохранения энергии в единичных процессах будет отринут. Одна из главных особенностей захватывающей теории Бора-Крамерса-Слэтера (1924 г.) заключалась в том, что классические законы сохранения энергии и импульса уступают место статистическим законам. [265] Эта теория (или, скорее, «программа») была сразу же «опровергнута» и ни одно следствие ее не нашло подкрепления; она так и не была разработана настолько, чтобы объяснить β-распад.

265 Слэтер с большой неохотой участвовал в жертвенном заклании принципа сохранения. В 1964 г. он писал Ван дер Вардену: «Как Вы могли бы предположить, идея статистического сохранения энергии и импульса была заложена в теорию Бором и Крамерсом, вопреки моим лучшим намерениям». Ван дер Варден приложил немало стараний, чтобы реабилитировать Слэтера, чье преступление заключалось в том, что он взял на себя ответственность за ложную теорию ([198], р. 13).

Но несмотря на столь быстрое отвержение этой программы, - дело было не только в «опровержении» Комптона и Саймона и эксперименте Боте и Гейгера, но и в возникновении мощной соперницы: программы Гейзенберга-Шредингера (266) - Бор остался при убеждении, что нестатистические законы сохранения в конце концов должны быть отброшены и что бета-распадная аномалия никогда не найдет надлежащего объяснения, пока эти законы не будут замещены; если бы это произошло, (β-распад стал бы пониматься как решающий эксперимент, свидетельствующий против законов сохранения. Гамов рассказывает, как Бор пытался применить идею несохранения энергии при β-распаде для остроумного объяснения по-видимому вечного воспроизводства энергии в звездах. [267] Только Паули со своим мефистофельским стремлением бросить вызов Господу остался консерватором [268] и в 1930 г. выдвинул свою теорию нейтрино, чтобы объяснить бета-распад и вместе с тем спасти принцип сохранения энергии. О своей идее он сообщил в шутливом письме на конференцию в Тюбингене, сам же предпочел остаться в Цюрихе, чтобы поболеть за бейсбольную команду. [269] Впервые об этой идее он публично заявил на лекции в Пасадене (1931 г.), но не согласился на публикацию своей лекции, ибо ощущал «неуверенность». В это время (1932 г.) Бор все еще полагал, что, по крайней мере, в ядерной физике можно «отказаться от самой идеи сохранения энергии». [270]

266 Поппер заблуждается, утверждая, что «опровержений» было достаточно, чтобы привести эту теорию к краху ([161], р. 242; русск. перев., с. 367, 496).

267 [65], р. 72—74. Бор никогда не публиковал эу теорию (она была непроверяемой в тех условиях), но, как пишет Гамов, «похоже, он не был бы слишком удивлен, если бы она оказалась истинной». Гамов не приводит эту неопубликованную теорию, но вероятно, что Бор разработал ее в 1928—1929 гг., когда Гамов работал в Копенгагене.

268 См. пародийную постановку «Фауста», исполнявшуюся в Институте Бора в 1932 г.; опубликована Гамовым в приложении к его [65]. (См. Р. Мур. Нильс Бор — человек и ученый. М., 1969. С. 213—214. — Прим. перев.).

269 См. [141], р. 160.

270 [19]; русск. перев., с. 109. Эренфест также вначале выступил вместе с Бором против нейтрино. Открытие Чедвиком нейтрона в 1932 г. только слегка поколебало их оппозицию: их все же отпугивала идея частицы без заряда, возможно, даже без массы (покоя), с одним только «бестелесным» спином.

Наконец, Паули решил опубликовать свои размышления о нейтрино, представив их на Сольвеевский конгресс в 1933г., несмотря на то, что «реакция конгресса, за исключением двух молодых физиков, была скептической». [271] Но теория Паули имела некоторые методологические преимущества. Она спасала не только принцип сохранения энергии, но и принцип сохранения спина и статистику; она объяснила не только спектр b -распада, но и «азотную аномалию». (272) По критериям Уэвелла, это «совпадение индукций» должно быть достаточным, чтобы упрочить репутацию теории Паули. Но по нашим критериям, для этого необходимо еще и успешное предсказание новых фактов. Теория Паули удовлетворяла и этому критерию. У нее имелось интересное наблюдаемое следствие: β-спектр должен иметь ясную верхнюю границу. В то время проблема была открыта, но Эллис и Мотт уже занимались ей, [273] и вскоре ученик Эллиса Гендерсон показал, что их эксперименты говорят в пользу программы Паули. [274]

271 [211]. 273 [49]. 274 [73].

272 Захватывающее обсуждение нерешенных проблем, связанных с β-распадом и «азотной аномалией» см. в Фарадеевской лекции Бора, прочитанной до, а опубликованной после решения Паули ([I9], р. 380—383; [русск. перев., с. 105—110]).

На Бора это не произвело впечатления. Он знал, что если основная программа, в основу которой легло понятие статистического сохранения энергии, продолжает успешно развиваться, растущий пояс вспомогательных гипотез принимает на себя соответствующие обязанности по защите от наиболее опасных негативных данных.

И в самом деле, в эти годы большинство ведущих физиков полагало, что в ядерной физике законы сохранения энергии и импульса пали. [275] Причина была ясно указана Л.Мейтнер, признавшей свое поражение только в 1933 г.: «Все попытки поддержать значимость закона сохранения энергии также и для индивидуального атомного процесса основывались на предположении еще и другого процесса в b -распаде. Но такой процесс не был найден.. .»; [276] другими словами, программа, основанная на законах сохранения для атомных ядер, обнаружила эмпирически регрессирующий проблемный сдвиг. Имелись отдельные остроумные попытки объяснить непрерывность спектра β-излучения без допущения «нелегальной частицы». [277] Они вызвали большой интерес, [278] но были отвергнуты, поскольку не смогли обеспечить прогрессивный сдвиг.

275 Цит. по [132], р. 823. Гейзенберг в своей знаменитой статье “О строении атомных ядер”, в которой он ввел протон-нейтронную модель ядер, отмечает, что “поскольку при ?-распаде нарушается сохранение энергии, невозможно дать единственное определение энергии связи электрона в нейтроне” ([71], р. 164).

276 [121], р. 132. 277 Например, [192], [88]. 278 Наиболее интересное обсуждение этого вопроса см. в [179] р. 335-336.

В этот момент на сцену вышел Ферми. В 1933-1934 гг. он переинтерпретировал проблему b -излучения в рамках исследовательской программы новой квантовой теории. Тем самым он положил начало малой новой исследовательской программе нейтрино (которая позднее переросла в программу слабых взаимодействий). Он вычислил несколько первых приближенных моделей. [279] Хотя его теория не предсказала каких-либо новых фактов, он дал понять, что дело только за дальнейшими разработками.

Прошло два года. а обещание Ферми все еще не было выполнено. Однако новая программа квантовой физики развивалась быстро, по крайней мере, в той ее части, в какой она касалась неядерных явлений. Бор стал убеждаться в том, что некоторые исходные идеи программы Бора-Крамерса-Слэтера теперь были прочно связаны с новой квантовой программой, и что последняя разрешила внутренние теоретические проблемы старой квантовой программы, не затрагивая при этом законов сохранения . Поэтому Бор сочувственно следил за работами Ферми и в 1936 г., т. е. несколько нарушая обычную последовательность событий, оказал им, по нашим критериям слегка преждевременно, публичную поддержку.

В 1936 г. Шенкланд придумал новый способ проверки соперничающих теорий рассеяния фотона. Его результаты, казалось, поддержали уже списанную за негодностью теорию Бора-Крамерса-Слэтера и подорвали доверие к экспериментам, которые более десятилетия назад опровергали ее. [280] Статья Шенкланда произвела сенсацию. Те физики, которые питали неприязнь к новым путям исследования, сразу были готовы приветствовать эксперименты Шенкланда. Например, Дирак немедленно выразил удовлетворение по поводу возвращения "опровергнутой" программы Бора-Крамерса-Слэтера и написал очень острую статью против "так называемой квантовой электродинамики", в которой требовал "глубоких перемен в современных теоретических идеях, включая отказ от законов сохранения, чтобы получить удовлетворительную релятивистскую квантовую механику". [281] Кроме того, в этой статье Дирак утверждал, что β-распад вполне может стать одним из решающих доказательств, свидетельствующих против законов сохранения, и высмеивал «новую ненаблюдаемую частицу, нейтрино, которую некоторые исследователи постулировали, чтобы формально удержать принцип сохранения энергии, предполагая. что именно эта ненаблюдаемая частица ответственна за нарушение энергетического равновесия». [282] Впоследствии в дискуссию вступил Пайерлс. Он утверждал, что эксперимент Шенкланда может стать опровержением даже статистического принципа сохранения энергии. И добавлял: «Это, по-видимому, также хорошо, поскольку прежнюю концепцию сохранения приходится отвергнуть». [283]

В Копенгагенском институте Бора эксперименты Шенкланда были немедленно воспроизведены и признаны негодными. Якобсен, коллега Бора, сообщил об этом в письме в «Nature». Результаты Якобсена сопровождались заметкой самого Бора, который, твердо выступил против бунтарей и в защиту новой квантовой механики Гейзенберга. В частности, он защищал идею нейтрино от Дирака: «Нужно заметить, что основания для серьезных сомнений в строгой справедливости законов сохранения при испускании β-лучей атомным ядром сейчас в основном устранены благодаря многообещающему согласию между быстро увеличивающимися экспериментальными данными по явлениям β-излучения и следствиями нейтринной гипотезы Паули, столь блестяще развитой в теории Ферми». [284]

Теория Ферми в ее первом варианте не имела заметного эмпирического успеха. Более того, имевшиеся тогда данные, особенно относящиеся к случаю RaE, вокруг которого концентрировались исследования β-излучения, резко противоречили теории Ферми 1933-1934 гг. Он хотел разобраться с этой проблемой во второй части своей статьи, которая, однако, не была опубликована. Даже если видеть в теории Ферми первый вариант способной к дальнейшему развитию программы, до 1936 г. невозможно обнаружить какие-либо заслуживающие внимания признаки прогрессивного сдвига. [285] Но Бор хотел своим авторитетом поддержать отважную попытку Ферми применить новую большую программу Гейзенберга к атомным ядрам; а поскольку эксперимент Шенкланда и атаки Дирака и Пайерлса поставили β-распад в фокус критики этой новой программы, он не скупился на похвалы нейтринной программы Ферми, которая обещала заполнить ощутимую брешь. Без сомнения, последующее развитие нейтринной программы спасло Бора от драматического унижения: программы, основывающиеся на принципах сохранения Прогрессировали, тогда как в соперничающем лагере не было никакого прогресса. [286]

285 В период между 1933 и 1936 гг. некоторые физики предлагали модификация ad hoc или альтернативы теории Ферми; см., например, [9], [12], [86]. By и Мошковский в 1966 г. писали: «Как теперь известно, теория Ферми [т. е. программа] й-распада с замечательной точностью предсказывает как отношение между скоростью ?-распада и энергией разложения, так и контур β-спектра». Но, подчеркивают они, “с самого начала теория Ферми, к сожалению, подвергалась необъективным проверкам. Пока искусственные радиоактивные ядра не могли производиться в достаточном количестве, RaE было единственным явлением, вполне удовлетворявшим многочисленные экспериментальные требования в качестве ?-излучения при исследованиях контура его спектра. Только недавно стало понятно, что это явление было только весьма частным случаем. Его особая энергетическая зависимость приводила к отклонениям от того, что ожидалось от простой теории β-распада Ферми и это сильно тормозило прогрессивное развитие этой теории [т.е. программы] ([212] р. 6).

286 Вызывает сомнение даже то, была ли нейтринная программа Ферми прогрессивной или регрессивной даже в период между 1936 и 1950 гг.; даже после 1950 г. вердикт экспериментаторов все еще не было вполне ясным. Но об этом я постараюсь рассказать, когда представится другой случай. (Кстати, Шредингер защищал статистическую интерпретацию принципов сохранения, несмотря на ту решающую роль, какую он играл в разработке новой квантовой физики- см [181].)

Мораль сей истории опять-таки заключается в том, что статус «решающего» эксперимента зависит от характера теоретической конкуренции, в которую он вовлечен. Интерпретация и оценка эксперимента зависит от того, терпит ли исследовательская программа неудачу в соперничестве, или же Фортуна поворачивается к ней лицом.

Научный фольклор нашего времени, однако, перенасыщен теориями скороспелой рациональности. Рассказанная мной история фальсифицирована в большинстве описаний и реконструирована на основании ошибочных теорий рациональности. Такими фальсификациями полны даже лучшие популярные изложения. Я приведу только два примера:

1. В одной статье мы читаем о β-распаде следующее: «Когда эта ситуация возникла впервые, альтернативы выглядели мрачно. Физики были поставлены перед выбором: либо согласиться с крахом закона сохранения энергии, либо поверить в существование новой и невиданной частицы. Эта частица, испускаемая вместе с протоном и электроном при распаде нейтрона, могла спасти устои физики, поскольку предполагалось, что именно она отвечает за энергетическое равновесие. Это было в начале 30-х гг., когда введение новой частицы еще не было столь обычным, как сегодня. Тем не менее, лишь слегка поколебавшись, физики выбрали вторую возможность». [287] На самом же деле и выбор был вовсе не из двух возможностей, и «колебания» были совсем не легкими.

2. В хорошо известном учебнике по философии физики мы узнаем, что:

  • (1) «закону (или принципу) сохранения энергии был брошен серьезный вызов экспериментами по b -распаду, результаты которых были неоспоримы»;
  • (2) «тем не менее, закон не был отброшен, и было допущено существование новых частиц ("нейтрино"), чтобы привести этот закон в соответствие с экспериментальными данными";
  • (3) «основанием для этого допущения было то, что отрицание закона сохранения лишило бы значительную часть нашего физического знания его систематической связности» [288]-[289]

Все три пункта - ошибочны. Первый ошибочен, ибо никакой закон не может быть поставлен под сомнение из-за одного только эксперимента. Второй - ибо новые научные гипотезы нужны не для того только, чтобы заделывать трещины между данными и теорией, но для того, чтобы предсказывать новые факты. Третий ошибочен потому, что все было наоборот: тогда казалось, что только отрицание закона сохранения спасло бы «систематическую связность» нашего физического знания.

twitter.com facebook.com vkontakte.ru odnoklassniki.ru mail.ru ya.ru rutvit.ru myspace.com technorati.com digg.com friendfeed.com pikabu.ru blogger.com liveinternet.ru livejournal.ru memori.ru google.com bobrdobr.ru mister-wong.ru yahoo.com yandex.ru del.icio.us
Оставьте комментарий!

grin LOL cheese smile wink smirk rolleyes confused surprised big surprise tongue laugh tongue rolleye tongue wink raspberry blank stare long face ohh grrr gulp oh oh downer red face sick shut eye hmmm mad angry zipper kiss shock cool smile cool smirk cool grin cool hmm cool mad cool cheese vampire snake excaim question

Используйте нормальные имена. Ваш комментарий будет опубликован после проверки.

Имя и сайт используются только при регистрации

Если вы уже зарегистрированы как комментатор или хотите зарегистрироваться, укажите пароль и свой действующий email. При регистрации на указанный адрес придет письмо с кодом активации и ссылкой на ваш персональный аккаунт, где вы сможете изменить свои данные, включая адрес сайта, ник, описание, контакты и т.д., а также подписку на новые комментарии.

Авторизация MaxSiteAuth. Loginza

(обязательно)