01.08.2017. Перед вами ПЕРЕПЕЧАТКА с сайта Википедия выдержки из статьи Общая теория систем.
Материал из Википедии — свободной энциклопедии
Общая теория систем (теория систем) — научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов.
При клике по баннеру названия вы перейдете к оригинальной статье в Википедии.
Общесистемные принципы и законы
Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова, так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем. Среди таковых традиционно принято выделять:
Гипотеза семиотической непрерывности
«гипотеза семиотической непрерывности». «Онтологическая ценность системных исследований, как можно думать, определяется гипотезой, которую можно условно назвать „гипотезой семиотической непрерывности“. Согласно этой гипотезе, система есть образ её среды. Это следует понимать в том смысле, что система как элемент универсума отражает некоторые существенные свойства последнего». «Семиотическая» непрерывность системы и среды распространяется и за пределы собственно структурных особенностей систем, экстраполируясь также и на динамику их развёртывания. «Изменение системы есть одновременно и изменение её окружения, причём источники изменения могут корениться как в изменениях самой системы, так и в изменениях окружения. Тем самым исследование системы позволило бы вскрыть кардинальные диахронические трансформации окружения»[56]:94. В известном смысле данная гипотеза представляет собой лишь половину истины, поскольку в данном случае не берутся в расчёт собственные, внутренние потенциалы системного центра, собственно, и организующего процессы в системе, оформляющиеся на границе системного центра и его среды;
Принцип обратной связи
«принцип обратной связи». Положение, согласно которому устойчивость в сложных динамических формах достигается за счёт замыкания петель обратной связи: «если действие между частями динамической системы имеет этот круговой характер, то мы говорим, что в ней имеется обратная связь». Принцип обратной афферентации, сформулированный академиком Анохиным П. К., являющийся в свою очередь конкретизацией принципа обратной связи, фиксирует что регулирование осуществляется «на основе непрерывной обратной информации о приспособительном результате»;
Принцип организационной непрерывности
«принцип организационной непрерывности» (А. А. Богданов) утверждает, что любая возможная система обнаруживает бесконечные «различия» на её внутренних границах, и, как следствие, любая возможная система принципиально разомкнута относительно своего внутреннего состава (то есть открыта к его поэлементной и даже комплексной модификации), и тем самым она связана в тех или иных цепях опосредования со всем универсумом — со своей средой, со средой среды и т. д. Данное следствие эксплицирует принципиальную невозможность «порочных кругов», понятых в онтологической модальности. «Мировая ингрессия [универсальный метод связи явлений и сущностей природы, мышления и общества]в современной науке выражается как принцип непрерывности. Он определяется различно; тектологическая же его формулировка проста и очевидна: между всякими двумя комплексами вселенной, при достаточном исследовании устанавливаются промежуточные звенья, вводящие их в одну цепь ингрессии»;
Принцип совместимости
«принцип совместимости» (М. И. Сетров), фиксирует, что «условием взаимодействия между объектами является наличие у них относительного свойства совместимости», то есть относительной качественной и организационной однородности: так, прививка различных плодоносящих ветвей между различными плодовыми растениями возможно благодаря их относительной совместимости — но при этом трансплантация тканей от животного к человеку или даже между различными людьми в высшей степени проблематична, и стала возможной лишь в результате развития медицины на протяжении многих тысячелетий;
Принцип взаимно-дополнительных соотношений
«принцип взаимно-дополнительных соотношений» (сформулировал А. А. Богданов), дополняет закон расхождения, фиксируя, что «системное расхождение заключает в себе тенденцию развития, направленную к дополнительным связям». При этом смысл дополнительных соотношений целиком «сводится к обменной связи: в ней устойчивость целого, системы, повышается тем, что одна часть усваивает то, что дезассимилируется другой, и обратно. Эту формулировку можно обобщить и на все и всякие дополнительные соотношения». Дополнительные соотношения являются характерной иллюстрацией конституирующей роли замкнутых контуров обратных связей в определении целостности системы. Необходимой «основой всякой устойчивой системной дифференциации является развитие взаимно-дополнительных связей между её элементами». Данный принцип применим по отношению ко всем деривативам сложно организованных систем;
Закон необходимого разнообразия
«закон необходимого разнообразия» (У. Р. Эшби). Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие». Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);
Закон иерархических компенсаций
|
Принцип моноцентризма
«принцип моноцентризма» (А. А. Богданов), фиксирует, что устойчивая система «характеризуется одним центром, а если она сложная, цепная, то у неё есть один высший, общий центр». Полицентрические системы характеризуются дисфункцией процессов координации, дезорганизованностью, неустойчивостью и т. д. Подобного рода эффекты возникают при наложении одних координационных процессов (пульсов) на другие, чем обусловлена утрата целостности;
Закон минимума
«закон минимума» (А. А. Богданов), обобщающий принципы Либиха и Митчерлиха, фиксирует: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент». «Во всех тех случаях, когда есть хоть какие-нибудь реальные различия в устойчивости разных элементов системы по отношению к внешним воздействиям, общая устойчивость системы определяется наименьшей её частичной устойчивостью». Именуемое также «законом наименьших относительных сопротивлений», данное положение является фиксацией проявления принципа лимитирующего фактора: темпы восстановления устойчивости комплекса после нарушающего её воздействия определяются наименьшими частичными, а так как процессы локализуются в конкретных элементах, устойчивость систем и комплексов определены устойчивостью слабейшего её звена (элемента);
Принцип внешнего дополнения
«принцип внешнего дополнения»
(выведен Ст. Биром) «сводится к тому, что в силу теоремы неполноты Гёделя любой язык управления в конечном счёте недостаточен для выполнения стоящих перед ним задач, но этот недостаток может быть устранён благодаря включению „чёрного ящика“ в цепь управления». Непрерывность контуров координации достигается лишь посредством специфического устройства гиперструктуры, древовидность которой отражает восходящую линию суммации воздействий. Каждый координатор встроен в гиперструктуру так, что передаёт по восходящей лишь частичные воздействия от координируемых элементов (например, сенсоров). Восходящие воздействия к системному центру подвергаются своеобразному «обобщению» при суммации их в сводящих узлах ветвей гиперструктуры. Нисходящие по ветвям гиперструктуры координационные воздействия (например, к эффекторам) асимметрично восходящим подвергаются «разобобщению» локальными координаторами: дополняются воздействиями, поступающими по обратным связям от локальных процессов. Иными словами, нисходящие от системного центра координационные импульсы непрерывно специфицируются в зависимости от характера локальных процессов за счёт обратных связей от этих процессов.
Теорема о рекурсивных структурах
«теорема о рекурсивных структурах» Ст. Бир) предполагает, что в случае, «если жизнеспособная система содержит в себе жизнеспособную систему, тогда их организационные структуры должны быть рекурсивны» [от лат. recursio — возвращение];
Закон расхождения
«закон расхождения» (Г. Спенсер), также известный как принцип цепной реакции: активность двух тождественных систем имеет тенденцию к прогрессирующему накоплению различий. При этом «расхождение исходных форм идёт „лавинообразно“, вроде того как растут величины в геометрических прогрессиях, — вообще, по типу ряда, прогрессивно восходящего». Закон имеет и весьма продолжительную историю: «как говорит Г. Спенсер, „различные части однородной агрегации неизбежно подвержены действиям разнородных сил, разнородных по качеству или по напряжённости, вследствие чего и изменяются различно“. Этот спенсеровский принцип неизбежно возникающей разнородности внутри любых систем… имеет первостепенное значение для тектологии». Ключевая ценность данного закона заключается в понимании характера накопления «различий», резко непропорционального периодам действия экзогенных факторов среды.
Закон опыта
«закон опыта» (У. Р. Эшби) охватывает действие особого эффекта, частным выражением которого является то, что «информация, связанная с изменением параметра, имеет тенденцию разрушать и замещать информацию о начальном состоянии системы». Общесистемная формулировка закона, не связывающая его действие с понятием информации, утверждает, что постоянное «единообразное изменение входов некоторого множества преобразователей имеет тенденцию уменьшать разнообразие этого множества» — в виде множества преобразователей может выступать как реальное множество элементов, где воздействия на вход синхронизированы, так и один элемент, воздействия на который рассредоточены в диахроническом горизонте (если линия его поведения обнаруживает тенденцию возврата к исходному состоянию, и т.с. он описывается как множество). При этом вторичное, дополнительное «изменение значения параметра делает возможным уменьшение разнообразия до нового, более низкого уровня»; более того: сокращение разнообразия при каждом изменении обнаруживает прямую зависимость от длины цепи изменений значений входного параметра. Данный эффект в рассмотрении по контрасту позволяет более полным образом осмыслить закон расхождения А. А. Богданова — а именно положение, согласно которому «расхождение исходных форм идёт „лавинообразно“», то есть в прямой прогрессирующей тенденции: поскольку в случае единообразных воздействий на множество элементов (то есть «преобразователей») не происходит увеличения разнообразия проявляемых ими состояний (и оно сокращается при каждой смене входного параметра, то есть силы воздействия, качественных сторон, интенсивности и т. д.), то к первоначальным различиям уже не «присоединяются несходные изменения». В этом контексте становится понятным, почему процессы, протекающие в агрегате однородных единиц имеют силу к сокращению разнообразия состояний последних: элементы подобного агрегата «находятся в непрерывной связи и взаимодействии, в постоянной конъюгации (от лат. conjugatio — соединение), в обменном слиянии активностей. Именно постольку же и происходит, очевидно выравнивание развивающихся различий между частями комплекса»: однородность и однотипность взаимодействий единиц поглощают какие-либо внешние возмущающие воздействия и распределяют неравномерность по площади всего агрегата.
Принцип прогрессирующей сегрегации
«принцип прогрессирующей сегрегации» (Л. фон Берталанфи) означает прогрессирующий характер потери взаимодействий между элементами в ходе дифференциации, однако к оригинальной версии принципа следует добавить тщательно замалчиваемый Л. Фон Берталанфи момент: в ходе дифференциации происходит становление опосредованных системным центром каналов взаимодействий между элементами. Понятно, что происходит потеря лишь непосредственных взаимодействий между элементами, что существенным образом трансформирует принцип. Данный эффект оказывается потерей «совместимости». Является немаловажным то обстоятельство, что сам процесс дифференциации в принципе нереализуем вне централистически регулируемых процессов (в противном случае координация развивающихся частей оказалась бы невозможной): «расхождение частей» с необходимостью не может быть простой потерей взаимодействий, и комплекс не может превращаться в некое множество «независимых каузальных цепей», где каждая такая цепь развивается самостоятельно вне зависимости от остальных. Непосредственные взаимодействия между элементами в ходе дифференциации действительно ослабевают, однако не иначе как по причине их опосредования центром.
Принцип прогрессирующей механизации
«принцип прогрессирующей механизации» (Л. фон Берталанфи) является важнейшим концептуальным моментом. В развитии систем «части становятся фиксированными по отношению к определённым механизмам». Первичные регуляции элементов в исходном агрегате «обусловлены динамическим взаимодействием внутри единой открытой системы, которая восстанавливает своё подвижное равновесие. На них накладываются в результате прогрессирующей механизации вторичные механизмы регуляции, управляемые фиксированными структурами преимущественно типа обратной связи». Существо этих фиксированных структур было обстоятельно рассмотрено Богдановым А. А. и наименовано «дегрессией» (ограничения разнообразия состояний): в ходе развития систем формируются особые «дегрессивные комплексы», фиксирующие процессы в связанных с ними элементах (то есть ограничивающие разнообразие изменчивости, состояний и процессов). Таким образом, если закон Седова фиксирует ограничение разнообразия элементов нижних функционально-иерархических уровней системы, то принцип прогрессирующей механизации обозначает пути ограничения этого разнообразия — образование устойчивых дегрессивных комплексов: «"скелет", связывая пластичную часть системы, стремится удержать её в рамках своей формы, а тем самым задержать её рост, ограничить её развитие», снижение интенсивности обменных процессов, относительная дегенерация локальных системных центров и т. д. Следует заметить, что функции дегрессивных комплексов не исчерпываются механизацией (как ограничением разнообразия собственных процессов систем и комплексов), но также распространяются на ограничение разнообразия внешних процессов.
Принцип актуализации функций
«принцип актуализации функций» (впервые сформулировал М. И. Сетров) также фиксирует весьма нетривиальное положение. «Согласно этому принципу объект выступает как организованный лишь в том случае, если свойства его частей (элементов) проявляются как функции сохранения и развития этого объекта», или: «подход к организации как непрерывному процессу становления функций её элементов может быть назван принципом актуализации функций».Таким образом, принцип актуализации функций фиксирует, что тенденция развития систем есть тенденция к поступательной функционализации их элементов; само существование систем и обусловлено непрерывным становлением функций их элементов.
Использовано в статьях:
термин группа множество |